三分流火提示您:看后求收藏( 205,数理王冠,三分流火,起点小说),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
这场争辩直到最后也没有出结果, 因为望月新一不接受洛叶和舒尔茨两人的反驳, 而洛叶两人无法接受望月新一的解释。
就像正反两方的辩论队, 各有各的论据, 而不同的是辩论比赛是有裁判的, 而他们三人之间的争辩却是没有裁判的, 一群有资格当裁判的人现在还在迷茫于望月新一的论文中, 所以这场辩论赛以平局而收场。
牛津大会开始第一天就以出人意料的结果收场,可是没有人觉得不满,相反有幸旁观的人简直在结束后就一窝蜂的涌向了工作人员, 他们要今天的录像带,今天回去要好好对着研究一番,等明天再和人讨论!
而刚刚和望月新一争论的的洛叶两人受到了一众人的热烈欢迎。
克雷数学研究所所长再次对洛叶道, “如果你想加入克雷研究所, 务必联系我,能有你们这样的青年数学家加入, 克雷研究所才会有这样的影响力。”
加入克雷研究所后, 除了可以享受研究所的资料, 还能申请丰厚的资金用于研究。
而到了凌晨后, 克雷研究所就在官网上公布了洛叶两人今天和望月新一辩论的全部内容, 有视频版也有文字版。
刚刚公布就引来了无数晚睡的数学家瞩目,毕竟这可是abc猜想啊!他们可是时时刻刻的关注着牛津大学会议结果的。
他们本以为要等会议结束后才有整理后的资料, 谁知道现在就有了。
先点开文字版,在点开的刹那大概有无数的问号从他们脑袋上冒出来。
本以为会是点结论性的东西, 谁知道是争论性的东西。
他们和在场的人感觉一样, 看不懂,完全看不懂——
不得已再转战视频,等看了视频后,才算清楚了来龙去脉,这是风头最劲的两个年轻数学家和望月新一之间的争执内容。
这两人只用了短短数月的功夫看懂了望月新一的论文,还一起合作找了论文的漏洞?
不管在世界任意地方的人此刻仿佛都屏住了一刹那的呼吸,看着这两人仿佛又想起了年初时两人同时引爆数学界的盛况。
——这两人果然可怕至极,当他们联手后,就是之前狂傲的望月新一都不得不暂避锋芒。
——在克雷研究所公布辩论资料的第二天,望月新一对公布在个人网站上的论文做了改动。
即便他还是不承认洛叶和舒尔茨对他论文的攻陷是正确的,称这点改动是为了补充漏洞,但这也说明洛叶两人确实攻到了他的痛处!
abc猜想引得数学界震动,洛叶两人的反驳自然也跟着加入了这样的阵仗当中,他们两人重演了年初时的情境,全球各地不同的语言和肤色,只要数学相关的领域媒体全都报道了这次牛津大学会议,洛叶两人的照片也跟着登临了全球的数学媒体头条。
他们再次向世界证明了什么叫世界级的天才。
在会议开始的第二天,洛叶和舒尔茨就分别成为了这次会议的中心人物,深入研究abc猜想的数学家全都热情的要和他们讨论相关内容。
而洛叶每次都能在中途偷偷溜走,把这项解答的工作交给舒尔茨,让她最为流连的当然是牛津大学的图书馆。
牛津大学可是见证过无数的数学界,物理界的传说中的人物,最闻名的一个人物就是牛顿了,牛顿就曾经在这里任教,微积分也是他在这里创立,现在牛津大学的微积分相关领域几乎都独孤求败,在数学中的微分几何(黎曼几何)也十分厉害。
而微分几何的发展一度曾经陷入停滞区——为了描述流形(弯曲空间),需要在上面建立一套坐标,当用这些坐标书写公式时,这些等式由各种符号链接(如场方程中的指标m,n),这些符号只是薄记的工作,也可以称之为“指标的贬值”。在微分几何中这些数值是最重要和最有意义的,可以在研究微分几何的过程中,这些数值一度被弃之敝履。
经典的代表人物就是爱因斯坦,在爱因斯坦的广义相对论当中,物理定律独立于坐标系,这是一条基本原则,可是爱因斯坦在完善广义相对论的过程中,对此视而不见,去合适不变性的方程,为此浪费了许多的时间的和精力。
而让微分几何走出这种困境的,就是陈省身。
他和其他人一起完成的陈省身-高斯-博内公式可以说现在整个微分几何王国的奠基者。而陈省身曾在欧洲读书,后到了普林斯顿高等研究所工作,在欧洲读书的时候也是在法国而已,洛叶没有想到牛津大学居然还有他的笔记复印件在。
除了他在这个堪称伟大的公式上曾经的心理历程,还有一本只有短短六页的手稿。
这份只有短短六页的手稿同样具有非常高的收藏价值——在这六张手稿当中,首创了纤维丛概念——
它就像是一座城堡,而流形m是它的建筑平面图。
在流形上发生的一切只不过是在塔上面的纤维丛上发生事情的黯淡反射。
“爱因斯坦和狄拉克证明了在研究物理学的时候不能不考虑几何学,陈省身证明了在研究几何学的时候你不能不考虑物理学。我以为你现在研究的数论和代数几何或者是抽象代数,没想到你也对物理学产生兴趣了吗?”
一个穿着一丝不苟的男生忽然轻声开口,他看着就像是电视剧中经典的英国绅士形象,文质彬彬中带着一丝冷漠。
看着洛叶探究的眼神,他自我介绍,“艾斯利·默纳克,昨天我有去听你和舒尔茨的辩论。”
“非常的……精彩。”他顿了顿,似乎不太习惯这样直白的夸奖人,“我以为你现在应该在会议现场。”
洛叶道,“那里有舒尔茨。”
艾斯利闻言轻轻抿了抿唇,“你和我想的不太一样。”
洛叶对此没有什么反应,因为她究竟是什么样的人不用和任何人交代。
“——不过,能在这里遇到你,我很高兴。其实在上半年看到你论文的时候,我就希望和你交流一下,关于超维空间,有兴趣去旁边的咖啡店吗?”他看了看四周,刚刚他都控制着说话的音量,可如果要交流学术,这里不太适合。
“作为报酬,我可以给你推荐几本有趣的书,如果你对微分几何真的有兴趣的话。”
艾斯利的主攻方向就是微分几何,目前在准备他的博士论文,按他说的,他去年就开始准备,到今年论文大部分的内容已经完成,只是有些地方他还不满意,需要完善,而如果顺利,他今年应该就能拿到博士学位了。
而他的论文就是关于纤维丛的,纤维丛从陈省身开始引入了微积分,并且他证明了纤维丛中包含着有关空间的大量尚未开发的信息。
“……如果能彻底弄清楚纤维丛这个概念,弦理论应该又会被推进一大步。”艾斯利眼中微亮。
“到时候‘走出’宇宙吗?”
艾斯利,“毕竟我们想走出,就要先了解,而既然相了解,那就要用陈省身首创的语言工作。”
只要和几何相关的,洛叶几乎都有所涉猎,自然也能跟艾斯利相谈甚欢。
等两人结束交谈后,艾斯利惊喜的道,“你真的不想继续深入研究微分几何吗?”他本来只是想请教她一些超维空间的问题,用来完善他的论文,可没有想到洛叶在微分几何上也很有研究,尤其是黎曼曲面。
“你知道我现在的工作已经很多了。”洛叶耸耸肩,“或许等我拿到了硕士学位,我会改变下方向,稍微深入的研究下微分几何。”
艾斯利道,“我拿到博士后应该会去美国游学一段时间,如果那个时候我还在的话,请务必要联系我。”
他马上要拿到博士学位了,之后游学也不可能用太长时间,这是相信洛叶会很快硕士研究生毕业。
——确实,看到她和舒尔茨联合的精彩表演,没有人会不相信她会在最短时间内拿到硕士学位。
而就算洛叶在英国,和唐纳森和亚历山大的交流也没有断过。
亚历山大,“你和舒尔茨的辩论我看了,我有几个问题没有头绪,等你回来后希望可以从你那得到解答。”
唐纳森:“想不到你和舒尔茨这么熟悉,你们的表演虽然精彩,但是我相信我们的论文联合发表的时候会更精彩,毕竟我们的论文可以发表在期刊上。”
他们合作的acc猜想进展十分顺利,洛叶只负责了相对较少的一部分工作,可是其他的成员太给力,现在已经到了快完成的阶段。
而和亚历山大合作的三角形解剖问题倒是进展缓慢,毕竟洛叶同时也进行多项工作,而亚历山大重心也不在这上面,他们只在每周交流一次。
不过洛叶在牛津大学逛了一圈后已经想到了一个突破点,只等她从英国回去就努力攻克这个问题,而她的硕士毕业论文,她想用高阶gan-gross-prasad猜想。
而等到下半年真的来临后,今年的数学界各大知名奖项也到了提名阶段。
首先来势汹汹的就是舒尔茨,他的两篇论文到现在都在刷存在感,去年他和拉马努金奖失之交臂,可今年几乎没有人可以阻挡他的势头,唯一可以对他威胁的大概就是洛叶了。
毕竟今年洛叶也是风光无限,可是她的处境和去年的舒尔茨有些相似。
本章未完,点击下一页继续阅读。